Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytokine Growth Factor Rev ; 56: 115-123, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32921554

RESUMO

Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies.


Assuntos
Vacinas Anticâncer , Imunoterapia , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias/terapia , Vírus Oncolíticos/imunologia
2.
Cancers (Basel) ; 12(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224979

RESUMO

Ionising radiation causes cell death through the induction of DNA damage, particularly double-stranded DNA (dsDNA) breaks. Evidence suggests that adenoviruses inhibit proteins involved in the DNA damage response (DDR) to prevent recognition of double-stranded viral DNA genomes as cellular dsDNA breaks. We hypothesise that combining adenovirus treatment with radiotherapy has the potential for enhancing tumour-specific cytotoxicity through inhibition of the DDR and augmentation of virus production. We show that EnAd, an Ad3/Ad11p chimeric oncolytic adenovirus currently being trialled in colorectal and other cancers, targets the DDR pathway at a number of junctures. Infection is associated with a decrease in irradiation-induced 53BP1 and Rad51 foci formation, and in total DNA ligase IV levels. We also demonstrate a radiation-associated increase in EnAd production in vitro and in a pilot in vivo experiment. Given the current limitations of in vitro techniques in assessing for synergy between these treatments, we adapted the plaque assay to allow monitoring of viral plaque size and growth and utilised the xCELLigence cell adhesion assay to measure cytotoxicity. Our study provides further evidence on the interaction between adenovirus and radiation in vitro and in vivo and suggests these have at least an additive, and possibly a synergistic, impact on cytotoxicity.

3.
Cancers (Basel) ; 12(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244697

RESUMO

The interplay between oncolytic virus infection and tumour hypoxia is particularly unexplored in vivo, although hypoxia is present in virtually all solid carcinomas. In this study, oncolytic adenovirus infection foci were found within pimonidazole-reactive, oxygen-poor areas in a colorectal xenograft tumour, where the expression of VEGF, a target gene of the hypoxia-inducible factor (HIF), was attenuated. We hypothesised that adenovirus infection interferes with the HIF-signalling axis in the hypoxic tumour niche, possibly modifying the local vascular supply. In vitro, enadenotucirev (EnAd), adenovirus 11p and adenovirus 5 decreased the protein expression of HIF-1α only during the late phase of the viral life cycle by transcriptional down-regulation and not post-translational regulation. The decreasing HIF levels resulted in the down-regulation of angiogenic factors such as VEGF, coinciding with reduced endothelial tube formation but also increased T-cell activation in conditioned media transfer experiments. Using intravital microscopy, a decreased perfused vessel volume was observed in infected tumour nodules upon systemic delivery of EnAd, encoding the oxygen-independent fluorescent reporter UnaG to a tumour xenograft grown under an abdominal window chamber. We conclude that the attenuation of the HIF pathway upon adenoviral infection may contribute to anti-vascular and immunostimulatory effects in the periphery of established infection foci in vivo.

4.
Methods Mol Biol ; 2058: 261-270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31486044

RESUMO

The translational success of oncolytic virotherapies would benefit from the widespread use of clinically relevant ex vivo models. Malignant ascites, an accumulation of fluid in the peritoneum due to disseminated cancer, recapitulates many features of the tumor microenvironment, making it a valuable model for studying oncolytic virus activity. Here, we describe a method for the separation and storage of cellular and acellular components of malignant ascites, followed by flow cytometric characterization of the cellular fraction. We then outline a simple experiment using whole ascites to assess the activity of a bispecific T cell engager (BiTE)-expressing oncolytic adenovirus.


Assuntos
Ascite , Líquido Ascítico , Vetores Genéticos , Biópsia Líquida , Terapia Viral Oncolítica , Vírus Oncolíticos , Adenoviridae/genética , Biomarcadores , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Vetores Genéticos/genética , Humanos , Imunofenotipagem , Biópsia Líquida/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
5.
J Immunother Cancer ; 7(1): 320, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753017

RESUMO

BACKGROUND: Tumour-associated macrophages (TAMs) are often implicated in cancer progression but can also exert anti-tumour activities. Selective eradication of cancer-promoting (M2-like) TAM subsets is a highly sought-after goal. Here, we have devised a novel strategy to achieve selective TAM depletion, involving the use of T cell engagers to direct endogenous T cell cytotoxicity towards specific M2-like TAMs. To avoid "on-target off-tumour" toxicities, we have explored localising expression of the T cell engagers to the tumour with enadenotucirev (EnAd), an oncolytic adenovirus in Phase I/II clinical trials. METHOD: A panel of bi- and tri-valent T cell engagers (BiTEs/TriTEs) was constructed, recognising CD3ε on T cells and CD206 or folate receptor ß (FRß) on M2-like macrophages. Initial characterisation of BiTE/TriTE activity and specificity was performed with M1- and M2-polarised monocyte-derived macrophages and autologous lymphocytes from healthy human peripheral blood donors. T cell engagers were inserted into the genome of EnAd, and oncolytic activity and BiTE secretion assessed with DLD-1 tumour cells. Clinically-relevant ex vivo models (whole malignant ascites from cancer patients) were employed to assess the efficacies of the free- and virally-encoded T cell engagers. RESULTS: T cells activated by the CD206- and FRß-targeting BiTEs/TriTEs preferentially killed M2- over M1-polarised autologous macrophages, with EC50 values in the nanomolar range. A TriTE with bivalent CD3ε binding - the first of its kind - demonstrated enhanced potency whilst retaining target cell selectivity, whereas a CD28-containing TriTE elicited non-specific T cell activation. In immunosuppressive malignant ascites, both free and EnAd-encoded T cell engagers triggered endogenous T cell activation and IFN-γ production, leading to increased T cell numbers and depletion of CD11b+CD64+ ascites macrophages. Strikingly, surviving macrophages exhibited a general increase in M1 marker expression, suggesting microenvironmental repolarisation towards a pro-inflammatory state. CONCLUSIONS: This study is the first to achieve selective depletion of specific M2-like macrophage subsets, opening the possibility of eradicating cancer-supporting TAMs whilst sparing those with anti-tumour potential. Targeted TAM depletion with T cell engager-armed EnAd offers a powerful therapeutic approach combining direct cancer cell cytotoxicity with reversal of immune suppression.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Subpopulações de Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Adenoviridae/genética , Biomarcadores , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Expressão Gênica , Humanos , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/metabolismo , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Ligação Proteica , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Transgenes
6.
Cancer Gene Ther ; 26(3-4): 59-73, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177818

RESUMO

The 11th International Oncolytic Virus Conference (IOVC) was held from April 9-12, 2018 in Oxford, UK. This is part of the high-profile academic-led series of meetings that was started back in 2002 by Steve Russell and John Bell, with most of the previous meetings being held in North America (often in Banff). The conference brought together many of the major players in oncolytic virotherapy from all over the world, addressing all stages of research and development-from aspects of basic science and cellular immunology all the way through to early- and late-phase clinical trials. The meeting welcomed 352 delegates from 24 countries. The top seven delegate countries, namely, the UK, US, Canada, The Netherlands, Germany, Japan and South Korea, contributed 291 delegates while smaller numbers coming from Australia, Austria, Bulgaria, China, Finland, France, Iraq, Ireland, Israel, Italy, Latvia, Malaysia, Poland, Slovenia, Spain, Sweden and Switzerland. Academics comprised about half of the attendees, industry 30% and students 20%. The next IOVC is scheduled to be held on Vancouver Island in autumn 2019. Here we share brief summaries of the oral presentations from invited speakers and proffered papers in the different subtopics presented at IOVC 2018.


Assuntos
Congressos como Assunto , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Ensaios Clínicos como Assunto , Terapia Combinada/métodos , Terapia Combinada/tendências , Humanos , Neoplasias/imunologia , Terapia Viral Oncolítica/tendências , Resultado do Tratamento
7.
Mol Ther Oncolytics ; 15: 117-130, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31890865

RESUMO

Oncolytic viruses represent an emerging approach to cancer therapy. However, better understanding of their interaction with the host cancer cell and approaches to enhance their efficacy are needed. Here, we investigate the effect of chemically induced endoplasmic reticulum (ER) stress on the activity of the chimeric group B adenovirus Enadenotucirev, its closely related parental virus Ad11p, and the archetypal group C oncolytic adenovirus Ad5. We show that treatment of colorectal and ovarian cancer cell lines with thapsigargin or ionomycin caused an influx of Ca2+, leading to an upregulation in E1A transcript and protein levels. Increased E1A protein levels, in turn, increased levels of expression of the E2B viral DNA polymerase, genome replication, late viral protein expression, infectious virus particle production, and cell killing during Enadenotucirev and Ad11p, but not Ad5, infection. This effect was not due to the induction of ER stress, but rather the influx of extracellular Ca2+ and consequent increase in protein kinase C activity. These results underscore the importance of Ca2+ homeostasis during adenoviral infection, indicate a signaling pathway between protein kinase C and E1A, and raise the possibility of using Ca2+ flux-modulating agents in the manufacture and potentiation of oncolytic virotherapies.

8.
J Immunother Cancer ; 6(1): 55, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29898782

RESUMO

BACKGROUND: Oncolytic viruses are currently experiencing accelerated development in several laboratories worldwide, with some forty-seven clinical trials currently recruiting. Many oncolytic viruses combine targeted cytotoxicity to cancer cells with a proinflammatory cell lysis. Due to their additional potential to express immunomodulatory transgenes, they are also often known as oncolytic viral vaccines. However, several types of oncolytic viruses are human-specific and the lack of suitable immune-competent animal models complicates biologically relevant evaluation of their vaccine potential. This is a particular challenge for group B adenoviruses, which fail to infect even those immunocompetent animal model systems identified as semi-permissive for type 5 adenovirus. Here, we aim to develop a murine cell line capable of supporting replication of a group B oncolytic adenovirus, enadenotucirev (EnAd), for incorporation into a syngeneic immunocompetent animal model to explore the oncolytic vaccine potential of group B oncolytic viruses. METHODS: Transgenic murine cell lines were infected with EnAd expressing GFP transgene under replication-independent or -dependent promoters. Virus mRNA expression, genome replication, and late protein expression were determined by qRT-PCR, qPCR, and immunoblotting, respectively. We also use Balb/c immune-competent mice to determine the tumourogenicity and infectivity of transgenic murine cell lines. RESULTS: Our results show that a broad range of human carcinoma cells will support EnAd replication, but not murine carcinoma cells. Murine cells can be readily modified to express surface human CD46, one of the receptors for group B adenoviruses, allowing receptor-mediated uptake of EnAd particles into the murine cells and expression of CMV promoter-driven transgenes. Although the early E1A mRNA was expressed in murine cells at levels similar to human cells, adenovirus E2B and Fibre mRNA expression levels were hampered and few virus genomes were produced. Unlike previous reports on group C adenoviruses, trans-complementation of group B adenoviruses by co-infection with mouse adenovirus 1 did not rescue replication. A panel of group B adenoviruses expressing individual mouse adenovirus 1 genes were also unable to rescue EnAd replication. CONCLUSION: Together, these results indicate that there may be major differences in the early stages of replication of group C and B adenoviruses in murine cells, and that the block to the life cycle of B adenoviruses in murine cells occurs in the early stage of virus replication, perhaps reflecting poor activity of Ad11p E1A in murine cells.


Assuntos
Adenoviridae/patogenicidade , Proteína Cofatora de Membrana/metabolismo , Terapia Viral Oncolítica/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
9.
Hum Gene Ther ; 28(11): 1033-1046, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28793793

RESUMO

Oncolytic viruses (OVs) are quickly moving toward the forefront of modern medicines. The reward for the decades of research invested into developing viral platforms that selectively replicate in and lyse tumor cells while sparking anticancer adaptive immunity is presenting in the form of durable therapeutic responses. While this has certainly been a concerted global effort, in this review for the 25th anniversary of the European Society of Gene and Cell Therapy, we focus on the contributions made by European researchers. Research centers across Europe have held central roles in advancing OVs, from the earliest reports of coincidental viral infections leading to antitumor efficacy, to advanced mechanistic studies, and now through Phase I-III trials to imminent regulatory approvals. While challenges still remain, with limitations in preclinical animal models, antiviral immune clearance, and manufacture restrictions enforced by poor viral yields in certain cases, the field has come a very long way in recent years. Thoughtful mechanistic integration of OVs with standard of care strategies and other newly approved therapies should provide potent novel approaches. Combination with immunotherapeutic regimes holds significant promise, and the ability to arm the viral platform with therapeutic proteins for localized expression at the tumor site provides an opportunity for creating highly effective synergistic treatments and brings a new age of targeted cancer therapeutics.


Assuntos
Imunidade Adaptativa/genética , Neoplasias/terapia , Terapia Viral Oncolítica/tendências , Vírus Oncolíticos/genética , Europa (Continente) , Humanos , Neoplasias/genética , Vírus Oncolíticos/imunologia
10.
Mol Ther Oncolytics ; 5: 62-74, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28480328

RESUMO

Enadenotucirev is an oncolytic group B adenovirus identified by a process of bio-selection for the ability to selectively propagate in and rapidly kill carcinoma cells. It is resistant to inactivation by human blood components, potentially enabling intravenous dosing in patients with metastatic cancer. However, there are no known permissive animal models described for group B adenoviruses that could facilitate a conventional approach to preclinical safety studies. In this manuscript, we describe our tailored preclinical strategy designed to evaluate the key biological properties of enadenotucirev. As enadenotucirev does not replicate in animal cells, a panel of primary human cells was used to evaluate enadenotucirev replication selectivity in vitro, demonstrating that virus genome levels were >100-fold lower in normal cells relative to tumor cells. Acute intravenous tolerability in mice was used to assess virus particle-mediated toxicology and effects on innate immunity. These studies showed that particle toxicity could be ameliorated by dose fractionation, using an initial dose of virus to condition the host such that cytokine responses to subsequent doses were significantly attenuated. This, in turn, supported the initiation of a phase I intravenous clinical trial with a starting dose of 1 × 1010 virus particles given on days 1, 3, and 5.

11.
J Control Release ; 161(2): 537-53, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22366547

RESUMO

Gene delivery remains the greatest challenge in applying nucleic acid therapeutic for a broad range of diseases. Combining stability during the delivery phase with activation and transgene expression following arrival at the target site requires sophisticated vectors that can discriminate between cell types and respond to target-associated conditions to trigger expression. Efficient intravenous delivery is the greatest single hurdle, with synthetic vectors frequently found to be unstable in the harsh conditions of the bloodstream, and viral vectors often recognized avidly by both the innate and the adaptive immune system. Both types of vectors benefit from coating with hydrophilic polymers. Self-assembling polyelectrolyte non-viral vectors can achieve both steric and lateral stabilization following surface coating, endowing them with much improved systemic circulation properties and better access to disseminated targets; similarly viral vectors can be 'stealthed' and their physical properties modulated by surface coating. Both types of vectors may also have their tropism changed following chemical linkage of novel ligands to the polymer coating. These families of vectors go some way towards realizing the goal of efficient systemic delivery of genes and should find a range of important uses in bringing this still-emerging field to fruition.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos , Ácidos Nucleicos/administração & dosagem , Polímeros/administração & dosagem , Animais , Bactérias , Humanos , Vírus/genética
12.
Drug Discov Today ; 17(5-6): 215-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22198165

RESUMO

Building on their success in vaccination, many groups are now exploring the use of viruses as anticancer agents. In general, viral therapeutics provide the possibility to express anticancer proteins directly at the tumour site, decreasing exposure to normal tissue during delivery and maximising therapeutic index. Some viruses are also 'oncolytic', either naturally or by design, and these agents function to kill cancer cells selectively before spreading to infect adjacent cells and repeat the process. This whole field of cancer 'virotherapy' is moving forward rapidly at the moment, with notable clinical successes demonstrated with a range of oncolytic agents developed as directly oncolytic and also as oncolytic cancer vaccines. Given the versatility of oncolytic viruses to express therapeutic proteins we anticipate this approach will provide the platform for useful application of a broad range of innovative biological therapies.


Assuntos
Vacinas Anticâncer/farmacologia , Neoplasias/terapia , Neoplasias/virologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Humanos , Neoplasias/genética , Neoplasias/imunologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...